\qquad Hour \qquad
\qquad points, DUE \qquad Forces Book Assignment

Use Chapter 4 of your text book to answer the following questions.

SECTION 4-1: FORCE AND MOTION (p. 90)

1. What is a force? Give two examples.
2. What unit is force measured in? \qquad abbreviation for unit: \qquad
3. Force is a vector. What is a vector again? (Not from book)
4. Every vector has 2 components. Let's say you push your little sister with a force of 20 Newtons at $30^{\circ} \mathrm{N}$ of E . Find the two components of that vector. In other words, set up a right triangle and find F_{x} and F_{y}. (ans. 17.3 N and 10 N) (Not from book)
5. What is a free-body diagram? (p. 92)
6. Draw the free body diagram for your hand holding an apple. There should be 2 arrows, one for gravity, and one for your hand. (See p. 92 for help)
7. What is another term for the sum of all forces? \qquad

Newton's $2^{\text {nd }}$ Law (p. 95-96):

8. What is Newton's $2^{\text {nd }}$ Law? Write it solved for \mathbf{F}. List what each variable is and what unit it is measure in.
9. What other unit is a Newton equal to? (Last paragraph p. 95)

Use Newton's $2^{\text {nd }}$ Law ($F=m \times a$) to solve the following problems.
10. Find a car's acceleration if it has a mass of $1,000 \mathrm{~kg}$ and has a force of $2,000 \mathrm{~N}$ acting on it. (ans. $2 \mathrm{~m} / \mathrm{s}^{2}$)
11. If you increase the force applied, what should happen to the acceleration? \qquad
12. If you increase the mass of the object, what should happen to the acceleration? \qquad

Newton's $1^{\text {st }}$ Law (p. 98):

13. What does Newton's $1^{\text {st }}$ Law state?
\qquad Hour \qquad
14. Newton's $1^{\text {st }}$ law is also known as the law of \qquad
15. Define inertia.
16. What is equilibrium?
17. What are the 2 times an object can be in equilibrium? (See picture at top of page)

Weight and Drag Force (p. 100):

18. Define weight:
19. What unit is weight measured in?
20. What is the equation we use to find weight? \qquad
21. Calculate the force you exert on the earth, (your weight in N) if you have a mass of 60 kg . (The acceleration here is the acceleration due to gravity. The earth pulls down giving you weight) (ans. -588 N)
22. What is the difference between mass and weight? Would your weight change on the moon? Mass? (Not stated in book: Apply what you know about weight and mass)
23. What is drag force?
24. Drag force would be an example of \qquad -which is the force that opposes motion.
25. What is terminal velocity?
26. Should lighter or heavier objects reach terminal velocity faster? Why?

Newton's 3rd Law (p. 106):

27. What is an interaction pair? What is another name for it?
28. What is Newton's 3rd Law? Use the last paragraph on p. 106.
29. You hit the head of a nail with a hammer. (Not in book)
a. Does the nail or hammer experience greater force or is it the same? Explain.
b. Which would experience the greater acceleration? Explain.
